AN ELLIPSE IS THE LOCUS OF POINTS IN THE PLANE WHOSE DISTANCES TO TWO FIXED POINTS (CALLED THE FOCI) ADD UP TO A FIXED CONSTANT

GRADED BY ME

Find the vertex, focus and equation of the directrix of the parabola $x^2 + 8x + 2y + 2 = 0$.

SCORE: /4 PTS

$$x^{2} + 8x = -2y - 2$$

 $x^{2} + 8x + 16 = -2y + 14$
 $(x+4)^{2} = -2(y-7)(1)$
 $x = (-4, 7)(\frac{1}{2})$
 $x = (-4, \frac{1}{2})(\frac{1}{2})$
 $x = (-4, \frac{1}{2})(\frac{1}{2})$

Find the equation of the ellipse with foci (7, -5) and (-1, -5), and a major axis of length 16.

SCORE: _____ / 4 PTS

CENTER =
$$(7+\frac{1}{2}, -5) = (3, -5)$$

 $8^2 = 4^2 + b^2$
 $b^2 = 64 - 1b = 48^{\frac{1}{2}}$
 $(x-3)^2 + (y+5)^2 = 1$
 (48)
 (48)
 (48)
 (48)

- [a] The line segment joining the vertices of an ellipse is called the MAJOR AXIS TO
- [b] The line passing through the focus and vertex of a parabola is called the AXIS OF SYMMETRY]

Find the center, foci, vertices and eccentricity of the ellipse $3x^2 + 2y^2 + 18x - 8y + 11 = 0$.

SCORE: ____/5 PTS

$$3x^{2} + 18x + 2y^{2} - 8y = -11$$

$$3(x^{2} + 6x) + 2(y^{2} - 4y) = -11$$

$$3(x^{2} + 6x + 9) + 2(y^{2} - 4y + 4) = -11 + 27 + 8$$

$$(1)_{1} 3(x + 3)^{2} + 2(y - 2)^{2} = 24$$

$$(2x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(2x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(3x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(3x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(3x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(2x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(3x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(2x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(3x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(3x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(3x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(3x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(3x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(3x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(4x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(5x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(5x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x + 3)^{2} + (2y - 2)^{2} = 1$$

$$(7x$$

Find the equation of the parabola with focus (-8, 4) and directrix x = 2.

SCORE: _____ / 3 PTS

$$VERZTEX = \left(-\frac{8+2}{2}, 4\right) = \left(-\frac{3}{4}, \frac{4}{2}\right)$$

$$P = -5 \left(\frac{1}{2}\right)$$

$$(y-4)^{2} = 4(-5)(x+3)$$

$$(y-4)^{2} = -20(x+3)$$

$$(\frac{1}{2})^{2} = -20(x+3)$$